Salvadori A., Damioli V., Ravelli C., Mitola S., “Modeling and Simulation of VEGF Receptors Recruitment in Angiogenesis,” Mathematical Problems in Engineering, vol. 2018, Article ID 4705472, 10 pages, (2018)

Angiogenesis, the process of new blood vessel formation from preexisting ones, plays a pivotal role in tumor growth. Vascular endothelial growth factor receptor-2 (VEGFR2) is the main proangiogenic tyrosine kinase receptor expressed by endothelial cells (ECs). VEGFR2 binds different ligands triggering vascular permeability and growth. VEGFR2-ligands accumulate in the extracellular matrix (ECM) and induce the polarization of ECs as well as the relocation of VEGFR2 in the basal cell membrane in contact with ECM. We propose here a multiphysical model to describe the dynamic of VEGFR2 on the plasma membrane. The governing equations for the relocation of VEGFR2 on the membrane stem from a rigorous thermodynamic setting, whereby strong simplifying assumptions are here taken and discussed. The multiphysics model is validated against experimental investigations.

Read more