All living cells and tissues exert and experience physical forces that guide their function. Those mechanical processes are pivotal in the biophysics of embryonic formation, tumor angiogenesis, cancer growth and metastasis, wound healing, and developmental diseases. Cells can sense and mechanically respond to their surroundings by attaching to extracellular matrix (ECM) fibers through the formation of focal adhesions, developing actin networks, and actively generating tension via myosin motor contractility. This physical system is one of the most complex known to mankind and continues to be the subject of intense multidisciplinary research.
Theoretical and experimental characterization of living matter requires the collective effort of scientists across a wide range of disciplines, including solid mechanics and bio-fluid dynamics at different length and time scales. The role of mechanics in biology is therefore particularly relevant to the activities and expertise of the EuroMech community. We propose this Colloquium to encourage worldwide cooperation in advancing scientific understanding of cellular mechanobiology and morphogenesis.
A key aspiration is to bring together the most authoritative experts in the field exploring frontier problems, with a view to bridging theoretical and experimental methodologies. We aim to achieve a balance between leading perspectives in theoretical and computational mechanics, fluid modelling, experimental cell biomechanics, and mechanobiology. Moreover, the colloquium will foster the use of novel integrative methodologies to bridge experiments and theory with the use of data-driven approaches for the estimation of model parameters. Updated info at the event website https://638.euromech.org/
While computational and experimental methodologies in mechanobiology have been applied to understand tumor progression and cardiovascular diseases, there is significant opportunity to explore their applicability in many other areas of medicine, spanning microbial resistance, device-driven tissue remodeling, and reprogramming of cells in immunotherapy. This colloquium aims to bring together biologists and mechanicians tackling biophysical problems of major social impact. To restrict the scope, the colloquium will focus on biological processes that are underpinned by active remodeling of cells at different length scales. This colloquium is particularly concerned with the mechanics of cytoskeletal contractility and protrusion, migration, adhesion, ECM remodeling, morphogenesis, and nuclear mechano-transduction. The colloquium will therefore explore important biological phenomena in cells that may be explained by mechanical principles, including topics related to:
Cytoskeletal contractility and remodeling; Cellular protrusion and migration; Cellular adhesion and matrix interaction; Mechano-transduction through the cytoskeleton and nucleus; Protein active mechanics; Mechanical Homeostasis; In-vitro cytoskeletal gels; Bioinspired active materials; Cell Fate Transition; Cell Proliferation and Mitosis; Embryogenesis; Metastasis; Angiogenesis.
All Events
XXVI AIMETA Congress – 2-6 September 2024, Naples, Italy
In September 2024, Prof. Alberto Salvadori and Mattia Serpelloni, two members of the Mechanobiology Research Center, will partecipate at the XXVI AIMETA Congress. The Congress, hosted by the [...]
Mecanobionic Symposium “MECHANOBIOLOGY ACROSS SCALES: from the molecules to the organism and back” – 2-5 April 2024, Nice, France
The Mechanobiology Research Center is delighted to announce its partecipation at the Mechanobionic symposium "Mechanobiology across scales". Within the thematic semester "Mechanobionic" concerning mechanobiology at the Université of [...]